Надёжный хостинг

Тариф «Первый»: 2 сайта, 1 Гб, 2 MySQL, 2 FTP

  

Сажени
Книги
Дольмены
Скачать
Ссылки



Русские сажени


Древнерусские сажени

 

ТАБЛИЦА САЖЕНЕЙ (в см)

По Черняеву. (Золотые сажени Древней Руси, 2007).

Название сажени

сажень

полсажени

локоть

пядь

пясть

вершок

Меньшая

134,5

67,3

33,6

16,8

8,4

4,2

Малая

142,4

71,2

35,6

17,8

8,9

4,5

Простая

150,8

75,4

37,7

18,9

9,4

4,7

Кладочная

159,7

79,9

39,9

20,0

10,0

5,0

Египетская

166,3

83,2

41,6

20,8

10,4

5,2

Народная

176,0

88,0

44,0

22,0

11,0

5,5

Церковная

186,4

93,2

46,6

23,3

11,7

5,8

Царская

197,4

98,7

49,4

24,7

12,3

6,2

Пилецкого

205,5

102,8

51,4

25,7

12,8

6,4

Фараонова

209,1

104,6

52,3

26,1

13,1

6,5

Казенная

217,6

108,8

54,4

27,2

13,6

6,8

Греческая

230,4

115,2

57,6

28,8

14,4

7,2

Великая

244,0

122,0

61,0

30,5

15,3

7,6

Большая

258,4

129,2

64,6

32,3

16,2

8,1

Городовая

284,8

142,4

71,2

35,6

17,8

8,9

 Соотношение сажени и ее элементов:

Полсажени = ½ сажени

Локоть = ½ полсажени (1/4 сажени)

Пядь = ½ локтя (1/8 сажени)

Пясть = ½ пяди (1/16 сажени)

Вершок = ½ пясти (1/32 сажени)

 

 

А.Ф. Черняев
Золото  Древней  Руси, М., 1998

ЛОГИКА  ДРЕВНИХ  САЖЕНЕЙ

Выше упоминалось, что в Древней Руси имело хождение множество соизмерительных инструментов — саженей. Вот уже почти два столетия ученые пытаются привести это множество к минимальному количеству типоразмеров и пока безуспешно. И эти неудачи не случайны. Во всех работах по системам мер сажени рассматриваются только как измерительные инструменты, имеющие строго определенную длину и единственный способ применения — измерение. По сформулированной за два столетия метром логике измерительный инструмент должен с большой точностью делиться на некоторое количество одинаковых мерных единиц, обычно кратных «круглому числу». Например, метр делится на 10 дециметров, дециметр делится на 10 сантиметров и т.д. Сам по себе метр является стандартной величиной, десятимиллионной долей от одной четверти парижского меридиана, и получение его эталонной длины — достаточно сложная, продолжительная и дорогостоящая операция. А потому раз полученный эталонный отрезок в виде выверенного платинового стержня уже почти 200 лет хранится в футляре при постоянной температуре, давлении и влажности. И даже в этих условиях требуется уточнение его длины.

Возникают вопросы: А какими же методами производилось хранение измерительных инструментов в древности? Имеет ли смысл говорить об их точности? И не является ли требование точного измерения длины саженей логическим отголоском привычного использования стандартной единицы длины — метра? Ведь «хранение» это длилось тысячи лет со времен Древнего Египта, если не ранее [19]. К тому же никаких эталонов не найдено. Требовать от таких инструментов точности при отсутствии даже намеков на эталоны не приходится. И тем не менее...

Сооружения как Древней Руси, так и Древнего Египта своей соразмерностью, пропорциональностью и эстетической красотой, предназначенностью для облагораживающего воздействия на людей намного превосходят типовые и не типовые «коробки» XIX и XX вв. — детища очень точного стандартного метра.

Эта соразмерность и эстетическая красота сооружений — следствие особой, подвижной функции взаимосвязанного комплекса древнерусских саженей, заключающаяся в том, что их основное назначение — соизмерение, а потому они — не статические линейки, а остановленные длиною продолжающиеся динамические процессы.

Переведенные по длине, для облегчения пользования, в привычные для нас сантиметры, сажени, тем не менее, не обладают «настоящими» длинами. Сажени не являются измерительным инструментом и потому сами не имеют длины, хотя и применяются иногда для измерения. Как и тела не имеют размерности, так и сажени не обладают метричностью. Сажени — инструмент соизмерения, инструмент и система пропорционирования, поэтому их метрический модуль является бесконечным иррациональным числом, округленным до 4-го знака. А их диагональ слева направо снизу вверх есть не что иное как ряд золотой пропорции (в данном случае речь идет о русской матрице коэффициентов – прим. мое О.С.).

В матрице А.А. Пилецкого сажени по этой причине являются абстрактным выражением бесконечного процесса, принявшего форму конечных отрезков. Каждая сажень имеет как бы свою внутреннюю единицу измерения длины, нам неизвестную, отличную от всех остальных длин, и обусловленную собственным процессом молекулярного деления.

Фактически каждая сажень является одним из тех иррациональных отрезков-процессов, которые получаются делением отрезка любой длины в крайнем и среднем отношениях. Складывая или деля сажени, мы складываем или делим не отрезки длины, а процессы, бесконечности, а результаты деления или сложения как бы представляем целыми и неделимыми  отрезками. И потому вновь образовавшийся «отрезок» не является частью какого-то процесса, а представляет собой целое как новый самостоятельный процесс. В этом заключается основное качественное отличие саженей от метра. Метр — статическая измерительная единица, эталон, предназначенный для сопоставления с собой всех измеряемых тел. Сажень — соизмерительный процесс, обусловливающий нахождение соразмерности частей тел процессу, а следовательно, и самому телу. Метр фиксирует существующие пропорции, умертвляя их статичностью. Сажень соразмеряет пропорции процессом, оживляя их. Ибо все, что движется, соразмеренно живет.

Именно соразмерность определяет принципы разделения саженей на элементы. Являясь отрезком-процессом бесконечной длины, не отмеряемым ни к одному, ни к другому концу, сажень не может быть измерена никаким мерным инструментом.

Отрезок, имеющий один конец на бесконечности, обладает и другим концом, уходящим в бесконечность. И хотя для нас, для внешней системы, каждый из его концов конечен, и мы его определяем как конечный внешний измерительный инструмент, он остается для себя системой бесконечной, двигаясь в которой (если допустить, что нам в эту систему удалось попасть) от одного конца к другому никогда не дойти.

Разделить такой отрезок на две конечные части или отрезать от него, в его системе, отрезок конечной длины невозможно, ибо для такого отрезка не существует соизмеримого и неизменного эталонного элемента, кратного всему отрезку. Да и две разновеликие половинки — результат осуществленного разделения —сразу же изменят свои внутренние параметры. К тому же, как показывает деление в крайнем и среднем отношения, отрезок иррациональной длины не имеет места, находящегося точно по его центру, и деление его на 2 обусловливает появление двух иррациональных, как бы сопоставимых, но не соизмеримых по мерности отрезков-процессов.

А потому деление древних сажений-процессов возможно только на 2. Раздвоение саженей или их элементов приводит к появлению в качестве остатков только двух «бесконечно-конечных» длин. Растроение сажени, деление ее на 3, 5, 6, и т.д. частей невозможно, ибо создает условия для появления между бесконечными отрезками отрезков конечных, соизмеримых некоторому мерному инструменту, но не соразмерных, а следовательно, не являющихся процессами и не пригодных для соизмерения. Округление иррациональных раздвоенных отрезков в любых измерениях скрывает движение. Иррациональные числа, по С.Громову, — «не завершенные числа, как бы требующие постоянного довычисления», а потому динамические числа, и свойства их определяются динамической геометрией, представление о которой только начинают складываться в современной науке [9]. Кратко они сводятся к следующему.

В отличие от статической геометрии, в которой точка — геометрический объект, лишенный протяженности, а прямая, имея один ранг с точкой, представляет собой как бы слившиеся в длину точки и потому завершается с каждой стороны конечной точкой, в геометрии динамической точка есть сфера одного ранга, не имеющая центра, т.е имеющая радиус бесконечной длины, а прямая — слившиеся в одну цепочку точки другого, «меньшего» ранга. И завершается такая динамическая прямая пересечением границы предыдущей по рангу сферы-точки и устремлением по радиусу к ее отсутствующему центру, т. е. в бесконечность. Деление динамического отрезка сопровождается изменением в месте деления ранга «концевых» точек и превращением их в точки «большего» ранга, т.е. процессом движения по радиусу новых концов в бесконечность. Сложение вновь полученных, бесконечных отрезков не образует единого сдвоенного, как в статической геометрии, отрезка, а приводит к возникновению как бы составного, через точку другого ранга, отрезка. Так, диаметр любой окружности в динамической геометрии состоит, а не слагается, из двух бесконечных радиусов несоизмеримых с длиной образуемой ими окружности. Несоизмеримость проявляется всегда в виде трансцендентного числа при делении окружности на составной диаметр или на удвоенный радиус. Удвоение и есть составление двух бесконечностей в одну.

Эти процессы удвоения-раздвоения динамической геометрии положены, по-видимому, некоторой цивилизацией в основу системы древних саженей. Они определяют первую особенность изменения мерности соразмерных инструментов — получение отрезков меньшей длины последовательным делением их на 2. В матрице А.А. Пилецкого эта последовательность деления отображена рядом нисходящих под численной величиной каждой сажени чисел, образуемых последовательным делением ее на 2. Количество этих чисел, включая саму сажень, равно 6. Как было показано, они имеют следующие названия: сажень, полсажени, четверть сажени — локоть, восьмая часть сажени — поллоктя — пядь, шестнадцатая часть — полпяди или два вершка, или пясть, и тридцать вторая часть сажени — вершок или полпясти.

На вершке раздвоение заканчивается, хотя могло бы, как предполагал А.А. Пилецкий, и продолжаться бесконечно. Вершок является завершающим элементом, соразмерности. Он приобретает два функциональных назначения: с одной стороны, осуществляя функции соразмерности, а с другой, являясь измерительным инструментом. Он единственный среди элементов сажени может делиться на любое число, образуя измерительное частное, прибавление которого к любому элементу сажени превращает этот элемент из соизмерительного в измерительный, т.е. меняет его статус и качество с динамического на статическое, что делает невозможным участие его частей в процессе соизмерения. Ниже я попробую разобраться, чем обусловлено измерительное качество вершка, а пока отмечу, что существование шести раздвоенных элементов одной сажени является второй особенностью комплекса древних саженей.

Третья особенность заключается в существовании взаимосвязи элементов каждой сажени матрицы Пилецкого с элементами всех остальных саженей. Следствием данных взаимосвязей становится свойство матричной вязи [19], позволяющее находить посредством четырех действий арифметики, и в первую очередь сложения и вычитания, по элементам двух различных саженей элементы всех остальных саженей. Простейшей из операций матричной вязи является правило сложения и вычитания Фибонначи: сумма двух последовательных чисел по диагонали слева направо снизу вверх равна верхнему числу. Например, возьмем локоть казенный 54,4 см, сложим его с полсаженью народной 88,0 см и получим малую сажень 142,4 см. <...>.

ТАИНСТВО  ЦЕРКОВНОГО  ЗОДЧЕСТВА

Мастер — зодчий, по-современному — архитектор, на Руси не рассчитывал взаимосвязи и сопряжения размеров, не вычислял золотых пропорций, ибо не знал о них ничего, да и необходимости в этом не было. Поскольку, имея «Всемер», он выбирал соизмеримость саженей по правилу групп и по тому качеству (значимости церкви, например), которое требовалось объекту по назначению. Он даже не представлял, по-видимому, что у объекта что-то можно считать, поскольку оперировал не соизмеримыми сантиметрами, а несоизмеримыми саженями, и знал, что только при следовании методике — канону можно получить красивое сопряжение пропорций, гармонию, объект.

Пропорции не вычислялись потому, что они изначально заложены в длины саженей, и набор из нескольких саженей, выбранных по канону, всегда составляет пропорцию, отображенную в матрице (т.е. кратную золотому числу).

К тому же, похоже на то, что сажень не являлась директивно неизменным инструментом, и мастер в зависимости от своего замысла и статуса сооружения имел возможность некоторого изменения длины сажени так, чтобы гармония пропорциональности членения объекта на части переходила из явной в неявную, скрытую, и скрытая гармония непосвященными не просматривалась. Надо полагать, что мастера если и не знали, то чувствовали такую эстетику пропорций, которую Гераклит уместил в одно предложение: «... скрытая пропорция сильнее явной», а Платон охарактеризовал как: «... подобное в тысячу раз прекраснее неподобного... . Отношение части к целому и целого к части могут возникать только тогда, когда вещи не тождественны и не вполне отличимы друг от друга».

Сажень для зодчего не становилась уставом. Не оставалась декретно неизменным инструментом. Он, вероятно, имел возможность, даже без понимания обусловливающей ее причины, изменять в пределах 1% ее длину, что, как уже говорилось, не влияет на пропорционирование, но «размывает» его границы, которые к тому же намеренно выполнялись более «расплывчатыми» (например, их орнаментами, фризами, кокошниками и т.д.). Возможность изменения длины — вторая составляющая наличия многих видов саженей на территории Руси (первая, как показано выше, — восстановление саженей без ориентации на единый эталон).

Сажень как скрытый процесс с удвоением длины изменяет свою динамику. Пропорции, отображаемые ею, становятся как бы подвижными. Динамика подвижных пропорций повергает истинного Мастера, мастера с большой буквы, на создание гармоничного объекта в сотворчестве с Богом. И чем большей духовностью обладает Мастер, чем тоньше его чувство возвышенного и возвышающего, тем более впечатляющим будет продукт этого сотворчества.

Особенно важным становилось для мастеров отображение потаенной пропорции в композиции духовных сооружений и в первую очередь церквей, соборов, храмов. Церковь как культовое сооружение является Храмом Божьим, Храмом Христа, объектом святости для верующих и даже неверующих. Святость — мерило церкви. Мерило же всегда выражается числом. Числом, за которым может скрываться качество, в том числе и значимость возводимого объекта.

Число Христа 7. Число священное, иными словами — сакральное. И качественная композиция сооружаемой церкви как храма Христа, как сооружения духовного в своей потаенной пропорции включала элементы сакральности, содержащие совмещенное количество сдвоенных мер: мирские, открытые для всех,
и потаенные, кратные 7. И включала так, что не посвященные в таинство культовых сооружений христианства не замечали ни сдвоенности, ни кратности. Так же, как не замечалось и то, что в разбиении церкви, имеющей высший статус святости, было задействовано не менее 7 саженей различной длины.

Эти правила были настолько законспирированы и с такой осторожностью соблюдались (это и обусловило, по-видимому, их потерю), что и сегодня, любуясь, например, Великой Печерской церковью в Киеве, церковью Вознесения в Коломенском или той же церквью Параскевы Пятницы в Новгороде (или их макетами), даже крупные архитекторы не догадываются о двойной мерной структуризации этих шедевров и о саженной сакральности их пропорций священному числу 7. (И здесь отмечается параллель с древнеегипетской сакральностью.)

Следует особо подчеркнуть, что возможность совмещенного (сдвоенного) использования мер обусловливало именно наличие системы взаимосвязанных саженей, один из способов выражения которой удалось установить А.А.Пилецкому в образе табличной матрицы «Всемер». <...>

 

ДРЕВНЕРУССКАЯ  МЕТРОЛОГИЯ
ЕГИПЕТСКИХ  ПИРАМИД

Пирамиды Египта, возведенные почти за 3000 лет до н.э., и сегодня остаются загадочными и по технологии своего возведения, и по тем знаниям, которыми владели строители пирамид. Одной из самых больших загадок построения пирамид является загадка размеров мерных инструментов, по которым производилось конструирование и возведение объектов Древнего Египта. Построение строжайше выверенных пирамид (практически точные углы 90°, отклонение всего на 2-3 см сторон основания при длине более 200 м, соблюдение до секунд углов наклона боковых сторон, сведение граней пирамид в одну точку на высоте более 100 м и т.д.) свидетельствует о наличии у строителей точных измерительных инструментов и хорошо отработанной методики пространственного измерения. Но каковы размеры этих инструментов? Какое пропорционирование в них заложено? Какова методика производства измерительных работ? До сих пор науке это неизвестно.

Большинство исследователей считают, что древнеегипетские архитекторы также пользовались единым мерным инструментом, длина которого, как они полагают, почти совпадала с длиной современного стандартного метра. Со временем его размеры будут уточнены. Нахождение этих размеров осложняется тем, что результаты измерения стандартным метром параметров древнейших объектов всегда оказываются дробными. И это при всеобщем убеждении, что древние египтяне не были знакомы с дробями.

Тем не менее, точный размер искомого инструмента еще не определен, и потому однозначных ответов на целый ряд вопросов по пропорционированию древнеегипетских архитектурных элементов зданий и сооружений до сих пор нет. Неясно, например, почему параметры сооружений, и в первую очередь высоты пирамид в Гизе, определялись с точностью до четвертого-пятого знаков? Ведь гораздо проще определять их в целых числах. Например, высота - 143 м, длина стороны — 215 м и т.д. Тогда и размер используемого инструмента обнаружить было бы намного проще.

Надо полагать, что зодчие Древнего Египта это понимали тоже. Тем более, что геометрия объектов и особенно измерительные инструменты, используемые на строительстве пирамид, показали бы, что к моменту начала возведения пирамид жрецы владели гармонией динамической геометрии, к пониманию которой, как уже говорилось, человечество только приближается [6]. А потому создается впечатление, вероятно, правдоподобное, что архитекторы фараона, возводившие пирамиды, преднамеренно скрывали параметры измерительных инструментов. Поскольку достигнуть понимания структуры полуразрушенных пирамид без знания гармонии использования измерительных инструментов, их породивших, невозможно. Другими словами: пока не будет найдена гармония пропорциональных взаимосвязей древних измерительных инструментов, невозможно даже приблизиться к разгадке тайн пирамид.

Можно отметить, что аналогичная дробность возникает при измерении метром параметров древнерусских сооружений. Но в этом случае известно, что возникающая дробность есть следствие использования в Древней Руси множества диспропорциональных друг другу и метру саженей.

То, что в течение столетий археологи и ученые не могут определить величину древнеегипетского аналога современного метра, скорее всего свидетельствует об отсутствии единого мерного инструмента и о возможном существовании в Египте некоторого подобия древнерусской системы измерительных инструментов. И встает вопрос: а не может ли оказаться так, что и в Древней Руси, и в Древнем Египте использовалась одна и та же метрологическая система?

Выше уже говорилось об одном из возможных подтверждений данной версии, отображенном на панелях Хеси-Ра. Однако изображение на панелях не может служить доказательством применимости древнерусских саженей, например, при строительстве пирамид. Этим доказательством может считаться только непосредственное подтверждение кратности размеров отдельных элементов тех же пирамид древнерусским соизмерительным инструментам и методам их применения, а пока этой соизмеримости не получено, данное предположение будет оставаться гипотетической версией.

Для проверки этой версии еще раз отметим особенности применения системы древнерусских саженей.

Основная особенность применения системы саженей заключается в том, что уменьшение мерности инструмента (получение измерительных стержней меньшего масштаба, чем сажень) производилось последовательным делением соответствующей сажени на 2 (раздвоение).

Вторая особенность: ни одно сооружение на Руси не строилось с применением только одного вида саженей. При замерах длины здания использовалась одна сажень, ширины — другая, высоты — третья. Внутренняя разбивка производилась четвертой саженью. А если возводился следующий этаж, то его высота определялась в зависимости от окружающего ландшафта еще одной саженью или комбинацией из сажени и ее элементов. Например: две сажени, полторы сажени, сажень с четвертью (с локтем) и т.д.

Третья особенность: все параметры объектов замерялись только целым, как бы квантованным, числом измерительных инструментов — саженей, локтей, вершков и т.д. Например, длина здания равнялась 6 саженям городовым по 284,8 см или 12 саженям малым по 142,4 см, что в измерении метром равно 17,088 м. Ширина равна четырем полуторным простым саженям по 150,8 х 1,5 = 2,262 см, а в измерении метром 9,048 м. Наконец, высота равна двум простым саженям по 150,8 см или 3,016 м.

Таким образом, параметры объектов, отмеренные целым числом саженей, всегда оказываются дробными при измерении стандартным метром. И, как уже отмечалось, эта особенность систематически фиксируется при замерах метром всех древнеегипетских сооружений. А потому можно повториться, что достигнуть понимания структуры полуразрушенных пирамид без знания гармонии измерительных инструментов, их породивших, невозможно.

Рассмотрим исходя из методов использования системы саженей возможность применения их для определения параметров комплекса пирамид в Гизе и других древнейших объектов. Поскольку названия древнеегипетских измерительных инструментов до нас не дошли, ниже употребляются названия их аналогов, принятых на Руси.

Результаты измерения саженями параметров пирамид в Гизе, отображенные в таблицах 10 — 12 с точностью до ± 5 см на сотни метров, подтверждают предположение о единстве древнерусской и древнеегипетской систем измерительных инструментов и позволяют сделать следующие выводы [19]:

- все параметры пирамид (высота h, боковая сторона а, диагональ основания d, боковое ребро b, апофема с) кратны целому числу различных саженей, оставаясь дробными в измерении метром;

- основной параметр пирамид — высота определяется для всех пирамид целыми десятками различных саженей 90, 60, 30, кратными сакральному числу 3;

- все параметры пирамид измеряются различными саженями;

- один или несколько параметров каждого объекта при приведении модуля числа саженей к одной цифре равен или кратен сакральному числу; вероятно, это значащие числа каждого параметра;

- наибольший наклон сторон имеет пирамида Хафра, как и наибольшее совпадение расчетных параметров с результатами обмера;

- в структуре параметров пирамид задействовано десять древнерусских саженей.

Из таблицы 7 следует, что в структуру пирамиды Хафра заложены параметры священного египетского треугольника 3:4:5:

107,8 : 35,93 = 3; 143,73 : 35,93 = 4; 179,66 : 35,93 = 5.

А этот треугольник ассоциируется по древнеегипетской мифологии с тройкой основных богов: малый катет — богиня плодородия Исида, большой катет, или высота пирамиды, — бог Осирис и гипотенуза (апофема) — их сын Гор, и отображает природную гармонию объекта.

Рассмотрим, совпадают ли параметры некоторых других объектов комплекса и их помещений с размерами саженей.

Наиболее сохранившийся храм ансамбля пирамид в Гизе — нижний храм пирамиды Хафра имеет квадратную форму со стороной основания 45 x 45 м и высоту 13 м. По-видимому, эти данные, как и многие другие, округлены и его истинные размеры составляют 45,24 х 45,24 м, или 30 саженей простых, а высота 13,05 м или 7 саженей церковных. Большая галерея пирамиды Хеопса имеет длину 47 м или 33 сажени малых, и высоту 8,5 м, что составляет б тех же саженей, а возможно, 3 сажени городовых, и действительная высота 8,54 м. Погребальная комната имеет размеры по обмеру: длина 10,5 м, ширина 5,2 м и высота 5,8 м.

Таблица 10. Пропорции пирамиды Хафра

 

высота
h

бок.стор
a

диаг. осн.
d

бок. реб.
b

апофема
c

Обмер, м

143,74

215,47

 

 

 

Расчет, м

143,65

215,47

304,72

209,51

179,65

Кол.саж.

90

99

140

119

91

Наим.саж.

кладоч.

казен.

казен.

народ.

царек.

длина, см

159,7

217,6

217,6

176,0

197,4

Таблица 11. Пропорции пирамиды Хуфу

 

высота
h

бок.стор
a

диаг. осн.
d

бок. реб.
b

апофема
c

Обмер, м

146,60

233,00

 

 

 

Расчет, м

146,48

232,58

328,90

220,22

186,98

Кол.саж.

60

90

157

146

124

Наим.саж.

велик.

больш.

фараона

прост.

прост.

длина, см

244,0

258,4

209,07

150,8

150,8

Таблица 12. Пропорции пирамиды Менкаура

 

высота
h

бок.стор
a

диаг. осн.
d

бок. реб.
b

апофема
c

Обмер, м

67,73

107,73

 

 

 

Расчет, м

69,12

109,80

152,5

102,7

88,63

Кол.саж.

30

45

107

49

38

Наим.саж.

гречес.

казен.

малая

фараона

гречес.

длина, см

230,4

217,6

142,4

 

230,4

Отмечу, что комната представляет собой двусмежный квадрат (ДК), в длине которой 6 саженей народных или 10,56 м, в ширине 3 сажени народных или 5,28 см, и в высоте 3 сажени царских или 5,92 м. (Невольно возникает вопрос: а не совпадали ли древнерусские названия саженей с древнеегипетскими?)

И наконец, рядом с дорогой восхождения к пирамиде Хефрена лежит на страже огромный Сфинкс — каменный лев с головой человека. Высеченный из единой скалы, он по обмеру имеет длину 57 м и высоту 20 м. В саженях в длину возможно двойное счисление — 40 саженей малых (56,96 м) или 22 сажени больших, что составляет 56,85 м, и в высоту 7 саженей городовых, а в метрах 19,94 м.

Таким образом, есть все основания полагать, что все помещения и объекты комплекса пирамид в Гизе проектировались и возводились по мерным инструментам, полностью соразмерным древнерусским саженям.

Вернемся теперь к началу строительства пирамид и посмотрим, использовалась ли древнерусская система измерительных инструментов при их сооружении.

Итак, первая из возведенных пирамид — пирамида Джосера. По разным источникам ее высота 60 или 61 м. Стороны основания 115 х 125 м. В 61 м укладывается ровно 25 великих саженей. А по размерам сторон — 72 сажени кладочные или 114,98 м и 71 сажень народная или 124,96 м. Если же возьмем отгороженную стеной площадку, на которой возводился комплекс пирамиды, то она представляет собой прямоугольник 545 х 277 м. Эти параметры могут образовывать 2 комбинации саженей: в длину укладывается 260 саженей фараона или 544,65 м, 276 саженей царских или 544,82 м; в ширину 206 саженей меньших, т.е. 276,99 м или 140 саженей греческих — длина 276,48 м. Уточнить использование конкретных саженей можно только внешним обмером с точностью ± 3 см. Получается, что уже с первой пирамиды египетские строители использовали системный комплекс измерительных инструментов.

Продолжим рассмотрение пирамид. Пирамида Хуни в Медуме: 146 х 146 м, высота 118 м(?). В стороне укладывается 83 сажени народные или 74 сажени казенные, а длина стороны равна 146,08 м. В высоте укладывается 67 саженей народных (117,92 м), а это, видимо, показывает, что высота замерена с ошибкой.

Пирамида Снофру в Дашуре имеет основание 185,5 х 185,5 м и высоту около 100 м. Вероятно, замеры тоже не совсем точны. В стороне укладываются 123 сажени простых, и ее длина 185,48 м, а в высоте — 41 сажень великая, т.е. 100,04 м.

И последняя пирамида Снофру в том же Дашуре. Ее параметры 218,5 х 221,5 м и высота 104,4 м. И в этом случае вероятна неточность в измерении сторон. Высота равна 104,38 м или 56 саженям церковным. И здесь не исключена неточность, поскольку некоторые источники оценивают высоту в 92 м, а это ровно 61 сажень простая.

Следовательно, можно считать подтвержденным, что строители пирамид в Египте и зодчие Древней Руси при возведении различных объектов и вообще при всех соизмерениях пользовались одними и теми же измерительными инструментами.


Сажени | Книги | Дольмены|Скачать | Ссылки |

Тариф «Второй»: 4 сайта, 2 Гб, MySQL не ограничено, FTP не ограничено

Вверх



Besucherzahler dating sites
ñ÷åò÷èê ïîñåùåíèé
Яндекс.Метрика